How do you evaluate the integral int cos^3xsin^3x?

2 Answers
Jan 4, 2017

=1/4sin^4x - 1/6sin^6x + C

Explanation:

We want to rewrite so that either sine or cosine is all by itself with a power of 1 and use a u-substitution to eliminate it, leaving all terms in u that are easier to integrate.

=int cosx(cos^2xsin^3x)

Rewrite cos^2x using the pythagorean identity sin^2x + cos^2x = 1.

=int cosx(1 - sin^2x)sin^3xdx

=int cosx(sin^3x - sin^5x)dx

The derivative of sinx is cosx. Accordingly, we take the substitution u = sinx. Then du = cosxdx and dx = (du)/cosx

=int cosx(u^3 - u^5) * (du)/cosx

This will eliminate, leaving us only with u's.

=int u^3 - u^5 du

Integrate using x^ndx = x^(n + 1)/(n + 1) + C.

=1/4u^4 - 1/6u^6 + C

Resubstitute:

=1/4(sinx)^4 - 1/6(sinx)^6 + C

=1/4sin^4x - 1/6sin^6x + C

Hopefully this helps!

Jan 4, 2017

The answer is =1/192cos6x-3/64cos2x+C

Explanation:

cos^3x=1/4(cos3x+3cosx)

sin^3x=1/4(3sinx-sin3x)

cos^3x*sin^3x=1/16(cos3x+3cosx)(3sinx-sin3x)

=1/16(3cos3xsinx-cos3xsin3x+9cosxsinx-3sin3xcosx)

9cosxsinx=9/2sin2x

cos3xsin3x=1/2sin6x

-3sin3xcosx+3cos3xsinx=-3(sin(3x-x))=-3sin2x

Therefore,

cos^3x*sin^3x=1/16(9/2sin2x-3sin2x-1/2sin6x)

=3/32sin2x-1/32sin6x

So,

intcos^3x*sin^3xdx=3/32intsin2xdx-1/32intsin6xdx

=(3/32*-cos2x*1/2)-(1/32*-cos6x*1/6)+C

=1/192cos6x-3/64cos2x+C