How do you evaluate the integral cos3xsinx?

1 Answer
Jan 21, 2017

23(sinx)3227(sinx)72+C

Explanation:

Let u=sinx.

Then du=cosxdx and dx=ducosx

cos3xuducosx

cos2xudu

We can rewrite cos2x as 1sin2x.

(1sin2x)udu

Since u=sinx, u2=sin2x

(1u2)udu

(1u2)u12du

u12u52du

This can be evaluate as xndx=xn+1n+1+C

23u3227u72+C

23(sinx)3227(sinx)72+C

Hopefully this helps!