How do you evaluate the integral ∫cos3x√sinx?
1 Answer
Jan 21, 2017
Explanation:
Let
Then
⇒∫cos3x√u⋅ducosx
⇒∫cos2x√udu
We can rewrite
⇒∫(1−sin2x)√udu
Since
⇒∫(1−u2)√udu
⇒∫(1−u2)u12du
⇒∫u12−u52du
This can be evaluate as
⇒23u32−27u72+C
⇒23(sinx)32−27(sinx)72+C
Hopefully this helps!