How do you evaluate the integral int dx/(1-cos3x)dx1cos3x?

1 Answer
Oct 12, 2017

int dx/(1-cos3x) = -1/3cot((3x)/2)+Cdx1cos3x=13cot(3x2)+C

Explanation:

Substitute t=3xt=3x:

int dx/(1-cos3x) = 1/3 int (dt)/(1-cost)dx1cos3x=13dt1cost

Use now the trigonometric identity:

cost= (1-tan^2(t/2))/(1+tan^2(t/2))cost=1tan2(t2)1+tan2(t2)

So that:

1/(1-cost) = 1/(1-(1-tan^2(t/2))/(1+tan^2(t/2)))11cost=111tan2(t2)1+tan2(t2)

1/(1-cost) = (1+tan^2(t/2))/((1+tan^2(t/2))-(1-tan^2(t/2)))11cost=1+tan2(t2)(1+tan2(t2))(1tan2(t2))

1/(1-cost) = (1+tan^2(t/2))/(1+tan^2(t/2)-1+tan^2(t/2))11cost=1+tan2(t2)1+tan2(t2)1+tan2(t2)

1/(1-cost) = (1+tan^2(t/2))/(2tan^2(t/2))11cost=1+tan2(t2)2tan2(t2)

And as:

1+tan^2alpha = 1+ sin^2alpha/cos^2alpha = (cos^2alpha+sin^2alpha)/cos^2alpha = 1/cos^2alpha = sec^2alpha1+tan2α=1+sin2αcos2α=cos2α+sin2αcos2α=1cos2α=sec2α

we get:

int (dt)/(1-cost) = int sec^2(t/2)/(2tan^2(t/2))dtdt1cost=sec2(t2)2tan2(t2)dt

Substitute now:

u=tan(t/2)u=tan(t2)

du=1/2sec^2(t/2)dtdu=12sec2(t2)dt

and we have:

int sec^2(t/2)/(2tan^2(t/2))dt = int (du)/u^2 = -1/u+Csec2(t2)2tan2(t2)dt=duu2=1u+C

and undoing the substitution:

int (dt)/(1-cost) = -1/tan(t/2)+C = -cot(t/2)+Cdt1cost=1tan(t2)+C=cot(t2)+C

int dx/(1-cos3x) = -1/3cot((3x)/2)+Cdx1cos3x=13cot(3x2)+C