How do you evaluate the integral int dx/(1-x^2)^(5/2)?

1 Answer
Aug 15, 2017

(x(3-2x^2))/(3(1-x^2)^(3/2))+C

Explanation:

Let x=sintheta. This implies that dx=costhetad theta.

intdx/(1-x^2)^(5/2)

=int(costhetad theta)/(1-sin^2theta)^(5/2)

=intcostheta/(cos^2theta)^(5/2)d theta

=intsec^4thetad theta

=intsec^2theta(1+tan^2theta)d theta

Let u=tantheta so du=sec^2thetad theta.

=int(1+u^2)du

=u+1/3u^3+C

=tantheta+1/3tan^3theta+C

=1/3tantheta(3+tan^2theta)+C

Where x=sintheta, we have a triangle where the opposite side is x and the hypotenuse is 1. Thus, the adjacent side is sqrt(1-x^2) and tantheta=x//sqrt(1-x^2).

=x/(3sqrt(1-x^2))(3+x^2/(1-x^2))

=1/(3sqrt(1-x^2))((3-x^2)/(1-x^2))

=(x(3-2x^2))/(3(1-x^2)^(3/2))+C