Let x=sintheta. This implies that dx=costhetad theta.
intdx/(1-x^2)^(5/2)
=int(costhetad theta)/(1-sin^2theta)^(5/2)
=intcostheta/(cos^2theta)^(5/2)d theta
=intsec^4thetad theta
=intsec^2theta(1+tan^2theta)d theta
Let u=tantheta so du=sec^2thetad theta.
=int(1+u^2)du
=u+1/3u^3+C
=tantheta+1/3tan^3theta+C
=1/3tantheta(3+tan^2theta)+C
Where x=sintheta, we have a triangle where the opposite side is x and the hypotenuse is 1. Thus, the adjacent side is sqrt(1-x^2) and tantheta=x//sqrt(1-x^2).
=x/(3sqrt(1-x^2))(3+x^2/(1-x^2))
=1/(3sqrt(1-x^2))((3-x^2)/(1-x^2))
=(x(3-2x^2))/(3(1-x^2)^(3/2))+C