How do you evaluate the integral int dx/(x^2sqrt(x^2-3))? Calculus Techniques of Integration Integration by Parts 1 Answer Cem Sentin ยท mason m Aug 31, 2017 After using x=sqrt(3)*secu and dx=sqrt(3)*secu*tanu*du transforms, this integral became, int (sqrt(3)*secu*tanu*(du))/[3(secu)^2*sqrt(3)*tanu] =1/3*int (du)/secu =1/3*int cosu*du =1/3*sinu+C After using x=sqrt(3)*secu, secu=x/sqrt(3), tanu=sqrt(x^2-3)/sqrt(3) and sinu=tanu/secu=sqrt(x^2-3)/x inverse transforms, I found, int (dx)/[x^2*sqrt(x^2-3)]=sqrt(x^2-3)/(3x)+C Explanation: I used x=sqrt(3)*secu and dx=sqrt(3)*secu*tanu*du transform Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2849 views around the world You can reuse this answer Creative Commons License