How do you evaluate the integral #int dx/(x^2sqrt(x^2-3))#? Calculus Techniques of Integration Integration by Parts 1 Answer Cem Sentin · mason m Aug 31, 2017 After using #x=sqrt(3)*secu# and #dx=sqrt(3)*secu*tanu*du# transforms, this integral became, #int (sqrt(3)*secu*tanu*(du))/[3(secu)^2*sqrt(3)*tanu]# =#1/3*int (du)/secu# =#1/3*int cosu*du# =#1/3*sinu+C# After using #x=sqrt(3)*secu#, #secu=x/sqrt(3)#, #tanu=sqrt(x^2-3)/sqrt(3)# and #sinu=tanu/secu=sqrt(x^2-3)/x# inverse transforms, I found, #int (dx)/[x^2*sqrt(x^2-3)]=sqrt(x^2-3)/(3x)+C# Explanation: I used #x=sqrt(3)*secu# and #dx=sqrt(3)*secu*tanu*du# transform Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2708 views around the world You can reuse this answer Creative Commons License