How do you evaluate the integral int e^sqrtx?

2 Answers
Feb 5, 2017

int e^sqrt(x) dx = 2 e^sqrt(x) (sqrt(x)-1) + C

Explanation:

Substitute:

t = e^sqrt(x)

x = (lnt)^2

dx = 2lnt/t dt

we have:

int e^sqrt(x) dx = 2 int t lnt/t dt = 2int lnt dt

we can now integrate by parts:

int lnt dt = tlnt -int t d(lnt) = tlnt - int t (dt)/t = tlnt -int dt = tlnt -t +C=t(lnt -1) +C

undoing the substitution:

int e^sqrt(x) dx = 2 e^sqrt(x) (sqrt(x)-1) + C

Feb 5, 2017

Please see below for an alternative solution.

Explanation:

In order to integrate e^sqrtx dx by substitution, we would need the derivative of sqrtx. We will introduce the derivative and see if that helps. (If it doesn't help, we'll try something else.)

int e^sqrtx dx = int underbrace(2sqrtx)_u underbrace(e^sqrtx/(2sqrtx) dx)_(dv)

With u = 2sqrtx and dv = e^sqrtx/(2sqrtx) dx, we can find

du = 1/sqrtx and (integrating by substitution) v = e^sqrtx

uv-intvdu = 2sqrtx e^sqrtx - int e^sqrtx/sqrtx dx

= 2sqrtx e^sqrtx - 2 int e^sqrtx/(2sqrtx) dx

= 2sqrtx e^sqrtx - 2e^sqrtx +C

= 2e^sqrtx (sqrtx - 1) +C