How do you evaluate the integral int e^x(e^x+1)^3∫ex(ex+1)3? Calculus Techniques of Integration Integration by Parts 1 Answer Ratnaker Mehta Jan 19, 2017 1/4(e^x+1)^4+C14(ex+1)4+C. Explanation: Suppose that (e^x+1)=t :. e^xdx=dt# Hence, inte^x(e^x+1)^3dx=int(e^x+1)^3e^xdx∫ex(ex+1)3dx=∫(ex+1)3exdx =t^3dt=t^4/4=t3dt=t44 =1/4(e^x+1)^4+C=14(ex+1)4+C. Answer link Related questions How do I find the integral int(x*ln(x))dx∫(x⋅ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx∫(cos(x)ex)dx ? How do I find the integral int(x*cos(5x))dx∫(x⋅cos(5x))dx ? How do I find the integral int(x*e^-x)dx∫(x⋅e−x)dx ? How do I find the integral int(x^2*sin(pix))dx∫(x2⋅sin(πx))dx ? How do I find the integral intln(2x+1)dx∫ln(2x+1)dx ? How do I find the integral intsin^-1(x)dx∫sin−1(x)dx ? How do I find the integral intarctan(4x)dx∫arctan(4x)dx ? How do I find the integral intx^5*ln(x)dx∫x5⋅ln(x)dx ? How do I find the integral intx*2^xdx∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 2687 views around the world You can reuse this answer Creative Commons License