How do you evaluate the integral int ln(1+x^2)?

1 Answer
Jan 20, 2017

intln(1+x^2)dx=xln(1+x^2)-2x+2arctan(x)+C

Explanation:

I=intln(1+x^2)dx

Integration by parts takes the form intudv=uv-intvdu. For the given integral, let:

u=ln(1+x^2)

color(white)(u=ln(1+x^2))du=(2x)/(1+x^2)dx

dv=dx

color(white)(dv=dx)v=x

Then:

I=uv-intvdu

I=xln(1+x^2)-int(2x^2)/(1+x^2)dx

I=xln(1+x^2)-int(2(1+x^2)-2)/(1+x^2)dx

I=xln(1+x^2)-int(2-2/(1+x^2))dx

I=xln(1+x^2)-2intdx+2intdx/(1+x^2)

I=xln(1+x^2)-2x+2arctan(x)+C