How do you evaluate the integral int ln(1+x^2)?
1 Answer
Jan 20, 2017
Explanation:
I=intln(1+x^2)dx
Integration by parts takes the form
u=ln(1+x^2)
color(white)(u=ln(1+x^2))du=(2x)/(1+x^2)dx
dv=dx
color(white)(dv=dx)v=x
Then:
I=uv-intvdu
I=xln(1+x^2)-int(2x^2)/(1+x^2)dx
I=xln(1+x^2)-int(2(1+x^2)-2)/(1+x^2)dx
I=xln(1+x^2)-int(2-2/(1+x^2))dx
I=xln(1+x^2)-2intdx+2intdx/(1+x^2)
I=xln(1+x^2)-2x+2arctan(x)+C