How do you evaluate the integral int ln(x^2+x^3)∫ln(x2+x3)?
1 Answer
Jan 14, 2017
Explanation:
We have the integral:
I=intln(x^2+x^3)dxI=∫ln(x2+x3)dx
We should apply integration by parts, which takes the form
Differentiating
{(u=ln(x^2+x^3)" "=>" "du=(2x+3x^2)/(x^2+x^3)dx=(2+3x)/(x+x^2)dx),(dv=dx" "=>" "v=x):}
So:
I=uv-intvdu
I=xln(x^2+x^3)-int(2x+3x^2)/(x+x^2)dx
I=xln(x^2+x^3)-int(2+3x)/(1+x)dx
Either perform long division on
I=xln(x^2+x^3)-(3intdx-intdx/(x-1))
I=xln(x^2+x^3)-(3x-ln(abs(x-1)))
I=xln(x^2+x^3)+ln(abs(x-1))-3x+C