By the laws of logarithms:
=intlnx^2 + lnsqrt(4x - 1)dx
=intlnx^2dx + intlnsqrt(4x - 1)dx
=2intlnxdx+ 1/2intln(4x - 1)dx
We let u = 4x - 1. Then du = 4dx and dx = (du)/4.
=2intlnxdx + 1/2intlnu (du)/4
=2intlnxdx + 1/8intlnudu
We need to integrate the natural logarithm function by parts. Let u = lnx and dv = 1dx. Then du = 1/xdx and v = x.
int(udv) = uv - int(vdu)
int(lnx) = xlnx - int(x * 1/x)dx
int(lnx) = xlnx - x + C
Back to the original integral.
=2(xlnx - x) + 1/8(u lnu -u)+ C
=2xlnx - 2x + 1/8(4x - 1ln(4x - 1) - (4x - 1)) + C
=2xlnx - 2x + ((4x - 1)ln(4x - 1) - 4x + 1)/8 + C
Hopefully this helps!