How do you evaluate the integral int ln(x^2sqrt(4x-1))?

1 Answer
Dec 28, 2016

By the laws of logarithms:

=intlnx^2 + lnsqrt(4x - 1)dx

=intlnx^2dx + intlnsqrt(4x - 1)dx

=2intlnxdx+ 1/2intln(4x - 1)dx

We let u = 4x - 1. Then du = 4dx and dx = (du)/4.

=2intlnxdx + 1/2intlnu (du)/4

=2intlnxdx + 1/8intlnudu

We need to integrate the natural logarithm function by parts. Let u = lnx and dv = 1dx. Then du = 1/xdx and v = x.

int(udv) = uv - int(vdu)

int(lnx) = xlnx - int(x * 1/x)dx

int(lnx) = xlnx - x + C

Back to the original integral.

=2(xlnx - x) + 1/8(u lnu -u)+ C

=2xlnx - 2x + 1/8(4x - 1ln(4x - 1) - (4x - 1)) + C

=2xlnx - 2x + ((4x - 1)ln(4x - 1) - 4x + 1)/8 + C

Hopefully this helps!