How do you evaluate the integral int lnx/(1+x)^2?
1 Answer
Jan 19, 2017
Explanation:
I=intlnx/(1+x)^2dx
Integration by parts takes the form
u=lnx
dv=1/(1+x)^2dx
Differentiate
du=1/xdx
v=-1/(1+x)
Then:
I=uv-intvdu
I=-lnx/(1+x)-int1/x(-1/(1+x))dx
I=-lnx/(1+x)+int1/(x(1+x))dx
Perform partial fraction decomposition on
1/(x(1+x))=A/x+B/(1+x)
Then:
1=A(1+x)+Bx
Letting
1=A(1-1)+B(-1)
B=-1
Letting
1=A(1+0)+B(0)
1=A
Then:
1/(x(1+x))=1/x-1/(1+x)
So:
I=-lnx/(1+x)+int1/xdx-int1/(1+x)dx
These are simple integrals. The second can be performed with the substitution
I=-lnx/(1+x)+lnx-ln(1+x)+C