How do you evaluate the integral int lnx/(1+x)^2?

1 Answer
Jan 19, 2017

-lnx/(1+x)+lnx-ln(1+x)+C

Explanation:

I=intlnx/(1+x)^2dx

Integration by parts takes the form intudv=uv-intvdu. Let:

u=lnx
dv=1/(1+x)^2dx

Differentiate u and integrate dv. The integration of dv is best performed with the substitution t=1+x=>dt=dx. You should get:

du=1/xdx
v=-1/(1+x)

Then:

I=uv-intvdu

I=-lnx/(1+x)-int1/x(-1/(1+x))dx

I=-lnx/(1+x)+int1/(x(1+x))dx

Perform partial fraction decomposition on 1/(x(1+x)):

1/(x(1+x))=A/x+B/(1+x)

Then:

1=A(1+x)+Bx

Letting x=-1:

1=A(1-1)+B(-1)

B=-1

Letting x=0:

1=A(1+0)+B(0)

1=A

Then:

1/(x(1+x))=1/x-1/(1+x)

So:

I=-lnx/(1+x)+int1/xdx-int1/(1+x)dx

These are simple integrals. The second can be performed with the substitution s=1+x=>ds=dx.

I=-lnx/(1+x)+lnx-ln(1+x)+C