How do you evaluate the integral int sin^3xsqrt(1-cosx)?

1 Answer
Jan 20, 2017

int sin^3x sqrt (1-cosx)dx = 2/7(1-cosx)^(5/2) (9/5+cosx) + C

Explanation:

Write:

sin^3x = sinx * sin^2x = sinx (1-cos^2x) = sinx (1-cosx)(1+cosx)

so that:

int sin^3x sqrt (1-cosx)dx = int sinx (1+cosx)(1-cosx)^(3/2) dx

substitute:

t = 1-cosx
dt = sinx dx

int sin^3x sqrt (1-cosx)dx = int t^(3/2)(2-t)dt= 2int t^(3/2)dt - int t^(5/2)dt = 4/5t^(5/2) - 2/7t^(7/2) + C = 2/7t^(5/2) (14/5-t) + C

Substituting back:

int sin^3x sqrt (1-cosx)dx = 2/7(1-cosx)^(5/2) (9/5+cosx) + C