How do you evaluate the integral ∫sinθ2−cosθ? Calculus Techniques of Integration Integration by Parts 1 Answer Andrea S. Mar 22, 2017 ∫sinθdθ2−cosθ=ln(2−cosθ)+C Explanation: Substitute: x=2−cosθ dx=sinθdθ and we have: ∫sinθdθ2−cosθ=∫dxx=ln|x|+C=ln(2−cosθ)+C Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 1818 views around the world You can reuse this answer Creative Commons License