How do you evaluate the integral #int sintheta/(2-costheta)#? Calculus Techniques of Integration Integration by Parts 1 Answer Andrea S. Mar 22, 2017 #int (sinthetad theta)/(2-cos theta) = ln (2-costheta) + C# Explanation: Substitute: #x = 2-costheta# #dx = sintheta d theta# and we have: #int (sinthetad theta)/(2-cos theta) = int dx/x= ln abs x+C = ln (2-costheta) + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1628 views around the world You can reuse this answer Creative Commons License