How do you evaluate the integral int sqrt(4x^2-1)/x^2?

1 Answer
Apr 30, 2018

I=2ln|2x+sqrt(4x^2-1)|-sqrt(4x^2-1)/x+c

Explanation:

Here,

I=intsqrt(4x^2-1)/x^2dx

Let,

2x=secu=>dx=1/2secutanudu

:.4x^2=sec^2u and x^2=1/4sec^2u

I=intsqrt(sec^2u-1)/(1/4sec^2u)xx1/2secutanudu

=4/2inttanu/sec^2uxxsecutanudu

=2inttan^2u/secu du

=2int(sec^2u-1)/secu du

=2int(secu-1/secu)du

=2int(secu-cosu)du

=2[ln|secu+tanu|-sinu]+c

=2ln|secu+sqrt(sec^2u-1)|-2(sinu/cosuxxcosu)+c

=2ln|secu+sqrt(sec^2u-1)|-2tanuxx1/secu+c

=2ln|secu+sqrt(sec^2u-1)|-(2sqrt(sec^2u-1))/secu+c

Subst. back, secu=2x, we get

I=2ln|2x+sqrt(4x^2-1)|-(2sqrt(4x^2-1))/(2x)+c

I=2ln|2x+sqrt(4x^2-1)|-sqrt(4x^2-1)/x+c