Here,
I=intsqrt(4x^2-1)/x^2dx
Let,
2x=secu=>dx=1/2secutanudu
:.4x^2=sec^2u and x^2=1/4sec^2u
I=intsqrt(sec^2u-1)/(1/4sec^2u)xx1/2secutanudu
=4/2inttanu/sec^2uxxsecutanudu
=2inttan^2u/secu du
=2int(sec^2u-1)/secu du
=2int(secu-1/secu)du
=2int(secu-cosu)du
=2[ln|secu+tanu|-sinu]+c
=2ln|secu+sqrt(sec^2u-1)|-2(sinu/cosuxxcosu)+c
=2ln|secu+sqrt(sec^2u-1)|-2tanuxx1/secu+c
=2ln|secu+sqrt(sec^2u-1)|-(2sqrt(sec^2u-1))/secu+c
Subst. back, secu=2x, we get
I=2ln|2x+sqrt(4x^2-1)|-(2sqrt(4x^2-1))/(2x)+c
I=2ln|2x+sqrt(4x^2-1)|-sqrt(4x^2-1)/x+c