Since the degree of the numerator is not less than the degree of the denominator, perform a long division
color(white)(aaaa)aaaax^4x4color(white)(aaaaaaaa)aaaaaaaa+1+1color(white)(aaaa)aaaa∣∣x^2+1x2+1
color(white)(aaaa)aaaax^4+x^2x4+x2color(white)(aaaaaaaa)aaaaaaaa#color(white)(aa)∣#x^2-1x2−1
color(white)(aaaa)aaaa0-x^20−x2color(white)(aaaa)aaaa+1+1
color(white)(aaaaaa)aaaaaa-x^2−x2color(white)(aaaa)aaaa-1−1
color(white)(aaaaaa)aaaaaa00color(white)(aaaaaaaa)aaaaaaaa22
Therefore,
(x^4+1)/(x^2+1)=x^2-1+2/(x^2+1)x4+1x2+1=x2−1+2x2+1
int((x^4+1)dx)/(x^2+1)=intx^2dx-int1dx+2intdx/(x^2+1)∫(x4+1)dxx2+1=∫x2dx−∫1dx+2∫dxx2+1
=x^3/3-x+2intdx/(x^2+1)=x33−x+2∫dxx2+1
Let x=tan thetax=tanθ, =>⇒, dx=sec^2theta d thetadx=sec2θdθ
and x^2+1=tan^2 theta+1=sec^2 thetax2+1=tan2θ+1=sec2θ
Therefore,
2intdx/(x^2+1)=2int(sec^2 theta d theta)/sec^2theta=2intd theta=2 theta=2arctanx2∫dxx2+1=2∫sec2θdθsec2θ=2∫dθ=2θ=2arctanx
So,
int((x^4+1)dx)/(x^2+1)=x^3/3-x+2arctanx+C∫(x4+1)dxx2+1=x33−x+2arctanx+C