How do you evaluate the integral int (x^4+1)/(x^2+1)x4+1x2+1?

1 Answer
Jan 8, 2017

The answer is =x^3/3-x+2arctanx+C=x33x+2arctanx+C

Explanation:

Since the degree of the numerator is not less than the degree of the denominator, perform a long division

color(white)(aaaa)aaaax^4x4color(white)(aaaaaaaa)aaaaaaaa+1+1color(white)(aaaa)aaaax^2+1x2+1

color(white)(aaaa)aaaax^4+x^2x4+x2color(white)(aaaaaaaa)aaaaaaaa#color(white)(aa)∣#x^2-1x21

color(white)(aaaa)aaaa0-x^20x2color(white)(aaaa)aaaa+1+1

color(white)(aaaaaa)aaaaaa-x^2x2color(white)(aaaa)aaaa-11

color(white)(aaaaaa)aaaaaa00color(white)(aaaaaaaa)aaaaaaaa22

Therefore,

(x^4+1)/(x^2+1)=x^2-1+2/(x^2+1)x4+1x2+1=x21+2x2+1

int((x^4+1)dx)/(x^2+1)=intx^2dx-int1dx+2intdx/(x^2+1)(x4+1)dxx2+1=x2dx1dx+2dxx2+1

=x^3/3-x+2intdx/(x^2+1)=x33x+2dxx2+1

Let x=tan thetax=tanθ, =>, dx=sec^2theta d thetadx=sec2θdθ

and x^2+1=tan^2 theta+1=sec^2 thetax2+1=tan2θ+1=sec2θ

Therefore,

2intdx/(x^2+1)=2int(sec^2 theta d theta)/sec^2theta=2intd theta=2 theta=2arctanx2dxx2+1=2sec2θdθsec2θ=2dθ=2θ=2arctanx

So,

int((x^4+1)dx)/(x^2+1)=x^3/3-x+2arctanx+C(x4+1)dxx2+1=x33x+2arctanx+C