Note that:
1/sqrt(4x+1) = 1/2 d/dx sqrt(4x+1)1√4x+1=12ddx√4x+1
So we can write the integral as:
int x/sqrt(4x+1) dx = 1/2 int x d(sqrt(4x+1))∫x√4x+1dx=12∫xd(√4x+1)
and integrate by parts:
int x/sqrt(4x+1) dx = 1/2xsqrt(4x+1) -1/2 int sqrt(4x+1)dx∫x√4x+1dx=12x√4x+1−12∫√4x+1dx
The resulting integral can be resolved directly using the power rule:
int x/sqrt(4x+1) dx = 1/2xsqrt(4x+1) -1/8 int (4x+1)^(1/2)d(4x+1)∫x√4x+1dx=12x√4x+1−18∫(4x+1)12d(4x+1)
int x/sqrt(4x+1) dx = 1/2xsqrt(4x+1) -1/8 (4x+1)^(3/2)/(3/2)+C∫x√4x+1dx=12x√4x+1−18(4x+1)3232+C
and simplifying:
int x/sqrt(4x+1) dx = 1/2xsqrt(4x+1) -1/12 (4x+1)sqrt(4x+1)+C∫x√4x+1dx=12x√4x+1−112(4x+1)√4x+1+C
int x/sqrt(4x+1) dx = (1/2x-1/3x-1/12)sqrt(4x+1) +C∫x√4x+1dx=(12x−13x−112)√4x+1+C
int x/sqrt(4x+1) dx = (2x-1)/12sqrt(4x+1) +C∫x√4x+1dx=2x−112√4x+1+C