How do you evaluate the integral int x/sqrt(4x+1)x4x+1?

1 Answer
Apr 10, 2017

int x/sqrt(4x+1) dx = (2x-1)/12sqrt(4x+1) +Cx4x+1dx=2x1124x+1+C

Explanation:

Note that:

1/sqrt(4x+1) = 1/2 d/dx sqrt(4x+1)14x+1=12ddx4x+1

So we can write the integral as:

int x/sqrt(4x+1) dx = 1/2 int x d(sqrt(4x+1))x4x+1dx=12xd(4x+1)

and integrate by parts:

int x/sqrt(4x+1) dx = 1/2xsqrt(4x+1) -1/2 int sqrt(4x+1)dxx4x+1dx=12x4x+1124x+1dx

The resulting integral can be resolved directly using the power rule:

int x/sqrt(4x+1) dx = 1/2xsqrt(4x+1) -1/8 int (4x+1)^(1/2)d(4x+1)x4x+1dx=12x4x+118(4x+1)12d(4x+1)

int x/sqrt(4x+1) dx = 1/2xsqrt(4x+1) -1/8 (4x+1)^(3/2)/(3/2)+Cx4x+1dx=12x4x+118(4x+1)3232+C

and simplifying:

int x/sqrt(4x+1) dx = 1/2xsqrt(4x+1) -1/12 (4x+1)sqrt(4x+1)+Cx4x+1dx=12x4x+1112(4x+1)4x+1+C

int x/sqrt(4x+1) dx = (1/2x-1/3x-1/12)sqrt(4x+1) +Cx4x+1dx=(12x13x112)4x+1+C

int x/sqrt(4x+1) dx = (2x-1)/12sqrt(4x+1) +Cx4x+1dx=2x1124x+1+C