How do you evaluate the integral int xsec(4x^2+7)?

2 Answers
Aug 15, 2017

ln|sec(4x^2+7)+tan(4x^2+7)|+C.

Explanation:

If we subst. 4x^2+7=y," then, "8xdx=dy.

Hence,

intxsec(4x^2+7)dx=1/8int(sec(4x^2+7))8xdx,

=1/8intsecydy,

=ln|secy+tany|,

=ln|sec(4x^2+7)+tan(4x^2+7)|+C.

Aug 15, 2017

The answer is =1/8ln(tan(4x^2+7)+sec(4x^2+7))+C

Explanation:

We need

intsecxdx=ln(tanx+secx)+C

We perform this integral by substitution

Let

u=4x^2+7, =>, du=(8x)dx

Therefore,

intxsec(4x^2+7)dx=1/8intsecudu

=1/8ln(tanu + secu)

=1/8ln(tan(4x^2+7)+sec(4x^2+7))+C