How do you evaluate the integral int xsin(3x^2+1)∫xsin(3x2+1)?
1 Answer
Jan 20, 2017
Explanation:
I=intxsin(3x^2+1)dxI=∫xsin(3x2+1)dx
Let
I=1/6intsin(3x^2+1)(6xcolor(white).dx)I=16∫sin(3x2+1)(6x.dx)
I=1/6intsin(u)duI=16∫sin(u)du
I=-1/6cos(u)+CI=−16cos(u)+C
I=-1/6cos(3x^2+1)+CI=−16cos(3x2+1)+C