To find 6 trigonometric functions of (5pi) / 45π4
hat (5pi)/4 ˆ5π4 is > 180^@>180∘ & < 270^@270∘ Hence it falls in the third quadrant where only tan theta and cot thetatanθandcotθ positive#
.
sin (5pi)/4 = sin (pi + pi/4) = - sin (pi/4) = color(red)(- (1/sqrt2)sin(5π)4=sin(π+π4)=−sin(π4)=−(1√2)
csc (5pi)/4 = csc (pi + pi/4) = - csc (pi/4) = color(red)(- (sqrt 2)csc(5π)4=csc(π+π4)=−csc(π4)=−(√2)
cos (5pi)/4 = cos (pi + pi/4) = - cos (pi/4) =color(red)( - (1/sqrt2)cos(5π)4=cos(π+π4)=−cos(π4)=−(1√2)
sec (5pi)/4 = sec (pi + pi/4) = - sec (pi/4) = color(red)(- (sqrt2)sec(5π)4=sec(π+π4)=−sec(π4)=−(√2)
tan (5pi)/4 = tan (pi + pi/4) = tan (pi/4) = color(green)(1 tan(5π)4=tan(π+π4)=tan(π4)=1
cot (5pi)/4 = cot (pi + pi/4) = cot (pi/4) = color(green)(1cot(5π)4=cot(π+π4)=cot(π4)=1