How do you evaluate the six trigonometric functions given t=5π/4?

1 Answer
Mar 16, 2018

As below.

Explanation:

To find 6 trigonometric functions of (5pi) / 45π4

hat (5pi)/4 ˆ5π4 is > 180^@>180 & < 270^@270 Hence it falls in the third quadrant where only tan theta and cot thetatanθandcotθ positive#

enter image source here .

sin (5pi)/4 = sin (pi + pi/4) = - sin (pi/4) = color(red)(- (1/sqrt2)sin(5π)4=sin(π+π4)=sin(π4)=(12)

csc (5pi)/4 = csc (pi + pi/4) = - csc (pi/4) = color(red)(- (sqrt 2)csc(5π)4=csc(π+π4)=csc(π4)=(2)

cos (5pi)/4 = cos (pi + pi/4) = - cos (pi/4) =color(red)( - (1/sqrt2)cos(5π)4=cos(π+π4)=cos(π4)=(12)

sec (5pi)/4 = sec (pi + pi/4) = - sec (pi/4) = color(red)(- (sqrt2)sec(5π)4=sec(π+π4)=sec(π4)=(2)

tan (5pi)/4 = tan (pi + pi/4) = tan (pi/4) = color(green)(1 tan(5π)4=tan(π+π4)=tan(π4)=1

cot (5pi)/4 = cot (pi + pi/4) = cot (pi/4) = color(green)(1cot(5π)4=cot(π+π4)=cot(π4)=1