How do you expand #ln ((5sqrty)/x^2)#? Precalculus Properties of Logarithmic Functions Natural Logs 1 Answer Somebody N. Apr 10, 2018 #color(blue)(1/2ln5+1/2lny-2lnx)# Explanation: The law of logarithms state: #log_c(a/b)=log_ca-log_cb# #log_c(ab)=log_ca+log_cb# #log_ca^b=blog_ca# Notice we can write: #5sqrt(y)=5y^(1/2)# #:.# #ln((5sqrt(y))/x^2)=ln((5(y)^(1/2))/x^2)# # \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=ln5(y)^(1/2)-lnx^2# # \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=1/2ln5y-2lnx# # \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=color(blue)(1/2ln5+1/2lny-2lnx)# Answer link Related questions What is the natural log of e? What is the natural log of 2? How do I do natural logs on a TI-83? How do I find the natural log of a fraction? What is the natural log of 1? What is the natural log of infinity? Can I find the natural log of a negative number? How do I find a natural log without a calculator? How do I find the natural log of a given number by using a calculator? How do I do natural logs on a TI-84? See all questions in Natural Logs Impact of this question 1490 views around the world You can reuse this answer Creative Commons License