How do you expand ln ((5sqrty)/x^2)ln(5yx2)?

1 Answer
Apr 10, 2018

color(blue)(1/2ln5+1/2lny-2lnx)12ln5+12lny2lnx

Explanation:

The law of logarithms state:

log_c(a/b)=log_ca-log_cblogc(ab)=logcalogcb

log_c(ab)=log_ca+log_cblogc(ab)=logca+logcb

log_ca^b=blog_calogcab=blogca

Notice we can write:

5sqrt(y)=5y^(1/2)5y=5y12

:.

ln((5sqrt(y))/x^2)=ln((5(y)^(1/2))/x^2)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=ln5(y)^(1/2)-lnx^2

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=1/2ln5y-2lnx

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=color(blue)(1/2ln5+1/2lny-2lnx)