How do you expand ln (e^3/(xy))ln(e3xy)?

1 Answer
Jul 16, 2016

ln(e^3/(xy))= -ln x - ln y + 3ln(e3xy)=lnxlny+3

Explanation:

To expand, we can use the properties of logarithms.

The properties of logarithms are:

ln(u*v) = ln(u) + ln(v)ln(uv)=ln(u)+ln(v)

ln(u/v) = ln(u) - ln(v)ln(uv)=ln(u)ln(v)

ln(u^n) = n*ln(u)ln(un)=nln(u)

Also remember that ln(e) = 1ln(e)=1.

Rewriting our expression yields

ln(e^3/(xy)) = ln(e^3) - ln(xy)ln(e3xy)=ln(e3)ln(xy)

= 3cancel(ln(e)) - [ln x + ln y]

=3 - ln x - ln y

= -ln x - ln y + 3