How do you expand ln((32)(53)(22))?

1 Answer
Jan 8, 2016

ln(335322)=12(3ln(5)2ln(2)3ln(3))

Explanation:

Given that ln(x)=logex
and are satisfied:
x>0,e>0,e1

We can apply the logarithmic properties:

ln(ab)=ln(a)+ln(b)
ln(ab)=ln(a)ln(b)
ln(ab)=bln(a)

and remembering that:

amn=nam
am=1am

then:

ln(335322)=ln((335322)12)=
=12ln(335322)=12(ln(33)+ln(53)+ln(22))=
=12(3ln(3)+3ln(5)2ln(2))

Alternitevely:

ln((335322)12)=12ln(335322)=
=12ln(533322)=
=12(ln(53)ln(33)ln(22))=
=12(3ln(5)3ln(3)2ln(2))