How do you expand ln sqrt(x^3/y^2)lnx3y2?

1 Answer
Jul 26, 2016

3/2*ln x - lny32lnxlny

Explanation:

ln sqrt(x^3/y^2)lnx3y2 can be rewritten as

ln (x^3/y^2)^(1/2)ln(x3y2)12

or ln (x^(3/2)/y^(2/2))ln(x32y22)

using one of logarithm rules: ln (a/b) = lna - lnbln(ab)=lnalnb

we have:

ln x^(3/2) - ln y^(2/2)lnx32lny22

or ln x^(3/2) - ln ylnx32lny

another one of these rules state that: ln a^b = b*lnalnab=blna

then we have:

3/2*ln x - lny32lnxlny