How do you express tan theta - cot theta tanθcotθ in terms of cos theta cosθ?

2 Answers
Mar 25, 2016

We must use the quotient identities, tantheta = sintheta/costhetatanθ=sinθcosθ and cottheta = costheta/sinthetacotθ=cosθsinθ

Explanation:

= sintheta/costheta - costheta/sinthetasinθcosθcosθsinθ

=sin^2theta/(costhetasintheta) - cos^2theta/(costhetasintheta)sin2θcosθsinθcos2θcosθsinθ

Use the pythagorean identity sin^2theta + cos^2theta = 1sin2θ+cos2θ=1 to simplify further.

= (1 - cos^2theta - cos^2theta)/(costhetasintheta)=1cos2θcos2θcosθsinθ

= (1 - 2cos^2theta)/(costhetasintheta)=12cos2θcosθsinθ

This is simplest form; we can't get rid of the sin (pardon the unintended pun!).

Hopefully this helps!

Mar 28, 2016

sqrt(1-cos^2theta)/costheta-costheta/sqrt(1-cos^2theta)1cos2θcosθcosθ1cos2θ

Explanation:

Express first in terms of sinthetasinθ and costhetacosθ.

=sintheta/costheta-costheta/sintheta=sinθcosθcosθsinθ

Now, to turn the sinthetasinθ terms into costhetacosθ terms, use the Pythagorean identity:

sin^2theta+cos^2theta=1sin2θ+cos2θ=1

sin^2theta=1-cos^2thetasin2θ=1cos2θ

sintheta=sqrt(1-cos^2theta)sinθ=1cos2θ

Substitute this into the expression we originally made:

=sqrt(1-cos^2theta)/costheta-costheta/sqrt(1-cos^2theta)=1cos2θcosθcosθ1cos2θ