Examples of trig expressions: f(x) = sin 2x + cos x; f(x)=sin2x+cosx;
f(x) = sin x + sin 2x + sin 3xf(x)=sinx+sin2x+sin3x
Examples of trig equations: f(x) = sin 2x + cos x = 0f(x)=sin2x+cosx=0
f(x) = sin x + sin 2x + sin 3x = 0f(x)=sinx+sin2x+sin3x=0
Examples of trig inequalities f(x) = sin 2x + cos x > 0f(x)=sin2x+cosx>0
f(x) = sin x + sin 2x + sin 3x < 0f(x)=sinx+sin2x+sin3x<0
Use trig Transformation Identities to transform these above trig expressions into trig basic expressions, or expressions in simplest form.
Example: Transform f(x) = sin 2x + cos xf(x)=sin2x+cosx. Use Identity (sin 2a = 2 sin a*cos a)(sin2a=2sina⋅cosa) to transform f(x).f(x).
f(x) = 2*sin x*cos x + cos x = cos x*(2sin x + 1)f(x)=2⋅sinx⋅cosx+cosx=cosx⋅(2sinx+1)
This is f(x) expressed in simplest form.
Trig equation in simplest form: f(x) = cos x*(sin 2x + 1) = 0f(x)=cosx⋅(sin2x+1)=0
Trig inequality in simplest form: f(x) = cos x*(2sinx + 1) > 0f(x)=cosx⋅(2sinx+1)>0