How do you factor 12j^2k - 36j^6k^6 + 12j^2?

1 Answer
May 21, 2016

12j^2k-36j^6k^6+12j^2=12j^2(k-3j^4k^6+1)

Explanation:

We can write 12j^2k=2^2*3*j^2*k

36*j^6*k^6=2^2*3^2*j^6*k^6 and

12j^2=2^2*3*j^2

Hence 12j^2k-36*j^6*k^6+12j^2

= 2^2*3*j^2*k-2^2*3^2*j^6*k^6+2^2*3*j^2

Now minimum power for 2 is 2; for 3 is 1; for j is 2 and for k is not there in last moomial. Taking this as common, we get

12j^2k-36j^6k^6+12j^2

= 2^2*3*j^2(k-3j^4*k^6+1)

= 12j^2(k-3j^4k^6+1)