How do you factor 15x^5-10x^4+5x^2 15x510x4+5x2?

1 Answer
Mar 2, 2017

15x^5-10x^4+5x^2=5x^2(3x^3-2x^2+1)15x510x4+5x2=5x2(3x32x2+1)

Explanation:

In the polynomial 15x^5-10x^4+5x^215x510x4+5x2, we have three monomials

15x^515x5, -10x^410x4 and 5x^25x2

As their GCF is 5x^25x2, we can take this common

and therefore, dividing each monomial by 5x^25x2, we get

3x^33x3, -2x^22x2 and 11.

Hence 15x^5-10x^4+5x^2=5x^2(3x^3-2x^2+1)15x510x4+5x2=5x2(3x32x2+1)