How do you factor 8x^3y^2 - 12x^2y^3 + 20x^2y^28x3y212x2y3+20x2y2?

1 Answer
Jun 7, 2015

We see all the numbers can be divided by color(blue)44 so we know we can factor by color(blue)44 :

=color(blue)4(2x^3y^2-3x^2y^3+5x^2y^2)=4(2x3y23x2y3+5x2y2)

We are now going to look at every member in the parenthesis :

2x^3y^2=2*x*x^2y^2=color(red)(2x)*color(purple)((x^2y^2)2x3y2=2xx2y2=2x(x2y2)

-3x^2y^3=-3*y*x^2y^2=color(red)(-3y)*color(purple)((x^2y^2)3x2y3=3yx2y2=3y(x2y2)

5x^2y^2=color(red)5*color(purple)((x^2y^2)5x2y2=5(x2y2)

Thus :color(blue)4(2x^3y^2-3x^2y^3+5x^2y^2)=color(blue)4color(purple)((x^2y^2)color(red)((2x-3y+5)4(2x3y23x2y3+5x2y2)=4(x2y2)(2x3y+5)