We see all the numbers can be divided by color(blue)44 so we know we can factor by color(blue)44 :
=color(blue)4(2x^3y^2-3x^2y^3+5x^2y^2)=4(2x3y2−3x2y3+5x2y2)
We are now going to look at every member in the parenthesis :
2x^3y^2=2*x*x^2y^2=color(red)(2x)*color(purple)((x^2y^2)2x3y2=2⋅x⋅x2y2=2x⋅(x2y2)
-3x^2y^3=-3*y*x^2y^2=color(red)(-3y)*color(purple)((x^2y^2)−3x2y3=−3⋅y⋅x2y2=−3y⋅(x2y2)
5x^2y^2=color(red)5*color(purple)((x^2y^2)5x2y2=5⋅(x2y2)
Thus :color(blue)4(2x^3y^2-3x^2y^3+5x^2y^2)=color(blue)4color(purple)((x^2y^2)color(red)((2x-3y+5)4(2x3y2−3x2y3+5x2y2)=4(x2y2)(2x−3y+5)