How do you factor and simplify sin^4x-cos^4x?

2 Answers
Aug 29, 2016

(sinx-cosx)(sinx+cosx)

Explanation:

Factorizing this algebraic expression is based on this property:

a^2 - b^2 =(a - b)(a + b)

Taking sin^2x =a and cos^2x=b we have :

sin^4x-cos^4x=(sin^2x)^2-(cos^2x)^2=a^2-b^2

Applying the above property we have:

(sin^2x)^2-(cos^2x)^2=(sin^2x-cos^2x)(sin^2x+cos^2x)

Applying the same property onsin^2x-cos^2x

thus,

(sin^2x)^2-(cos^2x)^2
=(sinx-Cosx)(sinx+cosx)(sin^2x+cos^2x)

Knowing the Pythagorean identity, sin^2x+cos^2x=1 we simplify the expression so,

(sin^2x)^2-(cos^2x)^2
=(sinx-Cosx)(sinx+cosx)(sin^2x+cos^2x)
=(sinx-cosx)(sinx+cosx)(1)
=(sinx-cosx)(sinx+cosx)

Therefore,
sin^4x-cos^4x=(sinx-cosx)(sinx+cosx)

Apr 18, 2017

= - cos 2x

Explanation:

sin^4x - cos^4 x = (sin^2 x + cos ^2 x)(sin^2 x - cos^2 x)
Reminder:
sin^2 x + cos^2 x = 1, and
cos^2 x - sin^2 x = cos 2x
Therefore:
sin^4x - cos^4 x = - cos 2x