How do you factor and solve #x^2+3x+1=0#?
1 Answer
Jun 5, 2016
Explanation:
Use the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
with
#0 = x^2+3x+1#
#= (x+3/2)^2-3^2/2^2+1#
#= (x+3/2)^2-5/2^2#
#= (x+3/2)^2-(sqrt(5)/2)^2#
#= ((x+3/2)-sqrt(5)/2)((x+3/2)+sqrt(5)/2)#
#= (x+3/2-sqrt(5)/2)(x+3/2+sqrt(5)/2)#
Hence:
#x = -3/2+sqrt(5)/2# or#x = -3/2-sqrt(5)/2#