How do you factor x3yx2y220xy3 completely?

1 Answer
Mar 4, 2017

x3yx2y220xy3=xy(4y+x)(5yx)

Explanation:

This is a homogeneous formula so making y=λx and substituting we have

x4(λλ220λ3). The roots of

λλ220λ3=0 are

λ={0,14,15} or

λλ220λ3=20λ(λ+14)(λ15)

then

x3yx2y220xy3=20x4λ(λ+14)(λ15) or

x3yx2y220xy3=20xy(y+x4)(yx5) or

x3yx2y220xy3=xy(4y+x)(5yx)