How do you factor y= x^5 - 16x^3 + 8x^2 - 128 ?

1 Answer
Jan 6, 2016

Factor by grouping then using a couple of identities to find:

x^5-16x^3+8x^2-128 = (x+2)(x^2-2x+4)(x-4)(x+4)

Explanation:

The sum of cubes identity can be written:

a^3+b^3=(a+b)(a^2-ab+b^2)

The difference of squares identity can be written:

a^2-b^2=(a-b)(a+b)

Factor by grouping then use these two identities as follows:

x^5-16x^3+8x^2-128

=(x^5-16x^3)+(8x^2-128)

=x^3(x^2-16)+8(x^2-16)

=(x^3+8)(x^2-16)

=(x^3+2^3)(x^2-4^2)

=(x+2)(x^2-(x)(2)+2^2)(x-4)(x+4)

=(x+2)(x^2-2x+4)(x-4)(x+4)