How do you factorize -9z^2+24z-32 over C?

1 Answer
May 22, 2017

-9z^2+24z-32=(x-4/3+sqrt(15)/3 i)(x-4/3-sqrt(15)/3 i)

Explanation:

If by "factorize...over C", you mean the set of complex numbers, then here are the following steps:

Step 1. Set the equation equal to zero
-9z^2+24z-32=0

Step 2. Plug the coefficients into the quadratic equation
z=(-b+-sqrt(b^2-4ac))/(2a) where a=-9, b=24, and c=-32

This gives

z=(-24+-sqrt(24^2-4(-9)(-31)))/(2(-9))

Step 3. Simplify
z=(-24+-sqrt(576-1116))/(-18)
z=(-24+-sqrt(-540))/-18
z=(-24+-sqrt(-36*15))/-18
z=(-24+-6sqrt(-15))/-18
z=(-24+-6sqrt(15)i)/-18
z=-24/-18+-(6sqrt(15)i)/-18
z=4/3+-(-sqrt(15))/3 i

Step 3. Break into two parts

z=4/3-sqrt(15)/3 i and z=4/3+sqrt(15)/3 i

z-4/3+sqrt(15)/3 i=0 and z-4/3-sqrt(15)/3 i=0

Step 4. Multiply these terms together for the final answer
-9z^2+24z-32=(z-4/3+sqrt(15)/3 i)(z-4/3-sqrt(15)/3 i)