How do you find |2+3i|? Precalculus Complex Numbers in Trigonometric Form Complex Number Plane 1 Answer Shwetank Mauria May 12, 2016 |2+3i|=√13 Explanation: |a+bi|=√a2+b2 Hence, |2+3i|=√22+32=√4+9=√13 Answer link Related questions What is the complex number plane? Which vectors define the complex number plane? What is the modulus of a complex number? How do I graph the complex number 3+4i in the complex plane? How do I graph the complex number 2−3i in the complex plane? How do I graph the complex number −4+2i in the complex plane? How do I graph the number 3 in the complex number plane? How do I graph the number 4i in the complex number plane? How do I use graphing in the complex plane to add 2+4i and 5+3i? How do I use graphing in the complex plane to subtract 3+4i from −2+2i? See all questions in Complex Number Plane Impact of this question 1798 views around the world You can reuse this answer Creative Commons License