How do you find #abs( 9+i )#?
1 Answer
Mar 23, 2016
#abs(9+i) = sqrt(82) ~~ 9.055385#
Explanation:
From Pythagoras, we get the distance formula and hence find:
#abs(a+bi) = sqrt(a^2+b^2)#
Another way of expressing this is that
To see this, notice that:
#(a+bi) bar((a+bi)) = (a+bi)(a-bi) = a^2 - b^2i^2 = a^2+b^2#
In our example,
#abs(9+i) = sqrt(9^2+1^2) = sqrt(81+1) = sqrt(82) ~~ 9.055385#