How do you find all the cube roots of z, where z = (sqrt3)/2 + 1/2i?

1 Answer
Jan 6, 2016

r_1 = cos(pi/18) + i sin(pi/18)

r_2 = cos((13pi)/18) + i sin((13pi)/18)

r_3 = cos((25pi)/18) + i sin((25pi)/18)

Explanation:

This is an example of "Casus Irreducibilis" - a Complex cube root that is not expressible in the form a+bi where a and b are expressed in terms of Real nth roots.

You can express it in terms of trigonometric functions.

z itself lies on the unit circle:

z = cos(pi/6) + i sin(pi/6)

Use De Moivre's formula:

(cos theta + i sin theta)^n = cos (n theta) + i sin (n theta)

to deduce:

The cube roots also lie on the unit circle at intervals of (2pi)/3:

r_1 = cos(pi/18) + i sin(pi/18)

r_2 = cos((13pi)/18) + i sin((13pi)/18)

r_3 = cos((25pi)/18) + i sin((25pi)/18)