How do you find angles A, B, and C if in triangle ABC, a=12a=12, b=15b=15, and c=20c=20?

1 Answer
May 3, 2018

A ~~ 36.71^@A36.71
B ~~ 48.34^@B48.34
C ~~ 94.93^@C94.93

Explanation:

To solve the for the angles when we have the lengths of all three sides, we use the law of cosines.

The law of cosines states that angle A = cos^-1((a^2 - b^2 - c^2)/(-2bc))A=cos1(a2b2c22bc), B = cos^-1((b^2 - a^2 - c^2)/(-2ac))B=cos1(b2a2c22ac), and C = cos^-1((c^2 - a^2 - b^2)/(-2ab))C=cos1(c2a2b22ab).

Let's find angle AA first:
A = (a^2 - b^2 - c^2)/(-2bc)A=a2b2c22bc

A = (12^2 - 15^2 - 20^2)/(-2(15)(20))A=1221522022(15)(20)

A = cos^-1((-481)/(-600))A=cos1(481600)

A ~~ 36.71^@A36.71

Now angle BB:
B = cos^-1((b^2 - a^2 - c^2)/(-2ac))B=cos1(b2a2c22ac)

B = cos^-1((15^2 - 12^2 - 20^2)/(-2(12)(20)))B=cos1(1521222022(12)(20))

B = cos^-1((-319)/(-480))B=cos1(319480)

B ~~ 48.34^@B48.34

Finally angle CC:
C = cos^-1((c^2 - a^2 - b^2)/(-2ab))C=cos1(c2a2b22ab)

C = cos^-1((20^2 - 12^2 - 15^2)/(-2(12)(15)))C=cos1(2021221522(12)(15))

C = cos^-1((31)/(-360))C=cos1(31360)

C ~~ 94.93^@C94.93

We can also find angle CC by doing 180^@ - 36.71^@ - 48.34^@18036.7148.34, since the measures of the angles in a triangle add up to 180^@180.

Hope this helps!