How do you find cos(sin^-1(sqrt2/2)+cos^-1(3/5))?

1 Answer
Oct 1, 2016

cos(sin^(-1)(sqrt(2)/2) + cos^(-1)(3/5)) = -sqrt(2)/10

Explanation:

Let alpha = sin^(-1)(sqrt(2)/2) and beta = cos^(-1)(3/5)

Then:

sin alpha = sqrt(2)/2

cos alpha = sqrt(1-sin^2 alpha) = sqrt(1-1/2) = sqrt(1/2) = sqrt(2)/2

sin beta = sqrt(1-cos^2 beta) = sqrt(1-3^2/5^2) = sqrt(1-9/25) = sqrt(16/25) = 4/5

cos beta = 3/5

Alternatively you could pick out these values from the 1:1:sqrt(2) and 3:4:5 right angled triangles...

enter image source here

alpha = pi/4, sin alpha = sin beta = 1/sqrt(2) = sqrt(2)/2

enter image source here

beta = B, sin beta = 4/5, cos beta = 3/5

Then using the formula for cos of a sum of angles we have:

cos (alpha+beta) = cos alpha cos beta - sin alpha sin beta

color(white)(cos (alpha+beta)) = sqrt(2)/2 3/5 - sqrt(2)/2 4/5

color(white)(cos (alpha+beta)) = -sqrt(2)/10