How do you find cos(sin^-1(sqrt2/2)+cos^-1(3/5))?
1 Answer
Oct 1, 2016
Explanation:
Let
Then:
sin alpha = sqrt(2)/2
cos alpha = sqrt(1-sin^2 alpha) = sqrt(1-1/2) = sqrt(1/2) = sqrt(2)/2
sin beta = sqrt(1-cos^2 beta) = sqrt(1-3^2/5^2) = sqrt(1-9/25) = sqrt(16/25) = 4/5
cos beta = 3/5
Alternatively you could pick out these values from the
alpha = pi/4 ,sin alpha = sin beta = 1/sqrt(2) = sqrt(2)/2
beta = B ,sin beta = 4/5 ,cos beta = 3/5
Then using the formula for
cos (alpha+beta) = cos alpha cos beta - sin alpha sin beta
color(white)(cos (alpha+beta)) = sqrt(2)/2 3/5 - sqrt(2)/2 4/5
color(white)(cos (alpha+beta)) = -sqrt(2)/10