How do you find sin(sin1(12)+cos1(35))?

1 Answer
Aug 30, 2016

3+4310.

Explanation:

Let a=sin1(12)Q1,fortheprcipalvalue. Then,

sina=12andcosa=1sin2a=114=32, for a in

Q1.

Let b=cos1(35)Q1,fortheprcipalvalue. Then,

cosb=35andsinb=1cos2a=1925=45, for b in

Q1.

Now, the given expression is

sin(a+b)

=sinacosb+cosasinb

=(12)(35)+(32)(45)

3+4310.

Yet, a could be in Q3, wherein cosa=32, and, similarly, b

could be in Q4, wherein sinb=45. Considering this, the

general value is

±3±43)10,

when the principal-value convention is relaxed..