How do you find sine, cosine, tangent of #90^@# or #180^@# using the unit circle?

1 Answer
Mar 10, 2018

#{: (sin(90^circ)=1,color(white)("xx"),sin(180^circ)=0), (cos(90^circ)=0,,cos(180^circ)=-1), (tan(90^circ)" is undefined",,tan(180^circ)=0) :}#

Explanation:

For the unit circle we have the situations pictured below; #90^circ# and #180^circ# are limits as the hypotenuse approaches the (positive) vertical axis and the (negative) horizontal axis respectively.
enter image source here

By definition:
#color(white)("XXX")sin=(color(green)("opposite"))/(color(red)("hypotenuse"))#

#color(white)("XXX")cos=(color(blue)("adjacent"))/(color(red)("hypotenuse"))#

#color(white)("XXX")tan=(color(green)("opposite"))/(color(blue)("adjacent"))#

As limits we can see that
#color(white)("XXX"){: (sin(90^circ)=(color(green)1)/(color(red)1)=1,color(white)("xx"),sin(180^circ)=(color(green)0)/(color(red)(-1))=0), (,,), (cos(90^circ)=(color(blue)0)/(color(red)1)=0,,cos(180^circ)=(color(blue)(-1))/(color(red)1)=-1), (,,), (tan(90^circ)=(color(green)1)/(color(blue)0)" : undefined",,tan(180^circ)=(color(green)0)/(color(blue)(-1))=0) :}#