How do you find the absolute value: |5-i|? Precalculus Complex Numbers in Trigonometric Form Complex Number Plane 1 Answer Shwetank Mauria Jun 29, 2016 |5-i|=sqrt26 Explanation: Absolute value |a+ib|=sqrt(a^2+b^2) Hence |5-i| = sqrt(5^2+(-1)^2) = sqrt(25+1) = sqrt26 Answer link Related questions What is the complex number plane? Which vectors define the complex number plane? What is the modulus of a complex number? How do I graph the complex number 3+4i in the complex plane? How do I graph the complex number 2-3i in the complex plane? How do I graph the complex number -4+2i in the complex plane? How do I graph the number 3 in the complex number plane? How do I graph the number 4i in the complex number plane? How do I use graphing in the complex plane to add 2+4i and 5+3i? How do I use graphing in the complex plane to subtract 3+4i from -2+2i? See all questions in Complex Number Plane Impact of this question 4203 views around the world You can reuse this answer Creative Commons License