How do you find the absolute value of 4-8i?

1 Answer
Jul 12, 2016

|4-8i|=sqrt{4^2+(-8)^2}=sqrt(16+64)=sqrt80=4sqrt5.

Taking, sqrt5~=2.236, |z|~=4xx2.236=8.944

Explanation:

Absolute Value or Modulus |z|of a Complex No. z=x+iy is defined by,

|z|=sqrt(x^2+y^2).

|4-8i|=sqrt{4^2+(-8)^2}=sqrt(16+64)=sqrt80=4sqrt5

Taking, sqrt5~=2.236, |z|~=4xx2.236=8.944