Given that
\sqrt{2-i}
=(2-i)^{1/2}
=(\sqrt5e^{-i\tan^{-1}(1/2)})^{1/2}
=(\sqrt5)^{1/2}(e^{-i\tan^{-1}(1/2)})^{1/2}
=5^{1/4}e^{-i1/2\tan^{-1}(1/2)}
=5^{1/4}(\cos(1/2\tan^{-1}(1/2))+i\sin(1/2\tan^{-1}(1/2)))
=5^{1/4}(\sqrt{\frac{\sqrt5+2}{2\sqrt5}}+i\sqrt{\frac{\sqrt5-2}{2\sqrt5}})
\therefore |\sqrt{2-i}|
=5^{1/4}|\sqrt{\frac{\sqrt5+2}{2\sqrt5}}+i\sqrt{\frac{\sqrt5-2}{2\sqrt5}}|
=5^{1/4}\sqrt{\frac{\sqrt5+2}{2\sqrt5}+\frac{\sqrt5-2}{2\sqrt5}}
=5^{1/4}