How do you find the absolute value of sqrt(2-i)?

1 Answer

5^{1/4}

Explanation:

Given that

\sqrt{2-i}

=(2-i)^{1/2}

=(\sqrt5e^{-i\tan^{-1}(1/2)})^{1/2}

=(\sqrt5)^{1/2}(e^{-i\tan^{-1}(1/2)})^{1/2}

=5^{1/4}e^{-i1/2\tan^{-1}(1/2)}

=5^{1/4}(\cos(1/2\tan^{-1}(1/2))+i\sin(1/2\tan^{-1}(1/2)))

=5^{1/4}(\sqrt{\frac{\sqrt5+2}{2\sqrt5}}+i\sqrt{\frac{\sqrt5-2}{2\sqrt5}})

\therefore |\sqrt{2-i}|

=5^{1/4}|\sqrt{\frac{\sqrt5+2}{2\sqrt5}}+i\sqrt{\frac{\sqrt5-2}{2\sqrt5}}|

=5^{1/4}\sqrt{\frac{\sqrt5+2}{2\sqrt5}+\frac{\sqrt5-2}{2\sqrt5}}

=5^{1/4}