How do you find the anti derivative of (sqrtx -8)/(sqrtx-4)?

1 Answer
Sep 7, 2015

int (sqrtx -8)/(sqrtx -4) dx=x-8sqrtx -32ln|sqrtx -4| +C

Explanation:

The expression is equivalent to 1 -4/(sqrtx -4)

int (sqrtx -8)/(sqrtx -4) dx= int (1 -4/(sqrtx -4) )dx= x -4int 1/(sqrtx -4) dx

Now to integrate 1/(sqrtx -4) dx, let x =t^2, so that dx= 2tdt and so int 1/(sqrtx-4) dx= int (2tdt)/(t-4)

=2int 1+4/(t-4) dt= 2(t+4 ln|t-4))=2sqrtx +8ln|sqrtx-4|

int (sqrtx -8)/(sqrtx -4) dx=x-8sqrtx -32ln|sqrtx -4| +C