How do you find the antiderivative of (4x^2 - 3x)e^x?

1 Answer
Mar 14, 2018

4e^x x^2-11e^x x+11e^x

Explanation:

The antiderivative of a function is its integral. Here, we need to solve:

int(4x^2-3x)e^xdx

According to integration by parts, intf(x)g(x)dx=f(x)intg(x)dx-intf'(x)(intg(x)dx)dx.

Here, f(x)=4x^2-3x and g(x)=e^x.

But since inte^xdx=e^x, we can just write:

e^x(4x^2-3x)-int(d/dx(4x^2-3x))e^xdx

e^x(4x^2-3x)-int(8x-3)e^xdx

Integrating by parts the integral, we get:

e^x(4x^2-3x)-e^x(8x-3)+int8e^xdx

e^x(4x^2-3x)-e^x(8x-3)+8e^x

e^x((4x^2-3x)-(8x-3)+8)

e^x(4x^2-3x-8x+3+8)

e^x(4x^2-11x+11)

4e^x x^2-11e^x x+11e^x