How do you find the antiderivative of e^( -x)*cos2x?
2 Answers
Explanation:
int \ e^(-x) cos(2x) \ dx = e^(-x)/5{2sin(2x)-cos(2x)} + C
Explanation:
Let:
I = int \ e^(-x) \ cos(2x) \ dx
We can use integration by parts:
Let
{ (u,=cos2x, => (du)/dx=-2sinx), ((dv)/dx,=e^(-x), => v=-e^(-x) ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
gives us
int \ (cos2x)(e^(-x)) \ dx = (cos2x)(-e^(-x)) - int \ (-e^(-x))(-2sin2x) \ dx
:. I = -e^(-x) cos2x - 2 \ int \ e^(-x) \ sin2x \ dx .... [A]
At first it appears as if we have made no progress, as now the second integral is similar to
Let
{ (u,=sin2x, => (du)/dx=2cos2x), ((dv)/dx,=e^(-x), => v=-e^(-x) ) :}
Then plugging into the IBP formula, gives us:
int \ (sin2x)(e^(-x)) \ dx = (sin2x)(-e^(-x)) - int \ (-e^(-x))(2cos2x) \ dx
:. int \ e^(-x) \ sin2x \ dx = -e^xsin2x + 2I
Inserting this result into [A] we get:
I = -e^(-x) cos2x - 2 (-e^xsin2x + 2I) + A
Now we can solve fior
I = -e^(-x) cos2x + 2e^xsin2x - 4I + A
:. 5I = e^x{2sin2x - cos2x} + A
:. I = e^x/5{2sin2x - cos2x} + A