How do you find the antiderivative of e^( -x)*cos2x?

2 Answers
Apr 11, 2018

=-1/5 e^(-x) ( cos 2x - 2 sin 2x) + C

Explanation:

int dx \ e^(-x) cos 2x

= mathbb(Re) ( int dx \ e^(-x) e^(2 i x) )

= mathbb(Re) ( 1/(- 1 + 2 i) e^((- 1 + 2 i) x) )

=e^(-x) mathbb(Re) ( (- 1 - 2 i)/(5) (cos 2x + i sin 2x) )

=1/5e^(-x) ( - cos 2x + 2 sin 2x) + C

=-1/5 e^(-x) ( cos 2x - 2 sin 2x) + C

Apr 11, 2018

int \ e^(-x) cos(2x) \ dx = e^(-x)/5{2sin(2x)-cos(2x)} + C

Explanation:

Let:

I = int \ e^(-x) \ cos(2x) \ dx

We can use integration by parts:

Let { (u,=cos2x, => (du)/dx=-2sinx), ((dv)/dx,=e^(-x), => v=-e^(-x) ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx

gives us

int \ (cos2x)(e^(-x)) \ dx = (cos2x)(-e^(-x)) - int \ (-e^(-x))(-2sin2x) \ dx
:. I = -e^(-x) cos2x - 2 \ int \ e^(-x) \ sin2x \ dx .... [A]

At first it appears as if we have made no progress, as now the second integral is similar to I, having exchanged sin2x for sin2x, but if we apply IBP a second time then the progress will become clear:

Let { (u,=sin2x, => (du)/dx=2cos2x), ((dv)/dx,=e^(-x), => v=-e^(-x) ) :}

Then plugging into the IBP formula, gives us:

int \ (sin2x)(e^(-x)) \ dx = (sin2x)(-e^(-x)) - int \ (-e^(-x))(2cos2x) \ dx
:. int \ e^(-x) \ sin2x \ dx = -e^xsin2x + 2I

Inserting this result into [A] we get:

I = -e^(-x) cos2x - 2 (-e^xsin2x + 2I) + A

Now we can solve fior I

I = -e^(-x) cos2x + 2e^xsin2x - 4I + A

:. 5I = e^x{2sin2x - cos2x} + A

:. I = e^x/5{2sin2x - cos2x} + A