How do you find the antiderivative of int sec^2xtanx dx?

1 Answer
Oct 27, 2016

intsec^2xtanxdx=1/2sec^2x+c

Explanation:

Method 1

now d/(dx)(secx)=secxtanx

sointsec^2xtanxdx=1/2sec^2x+c_1

since d/(dx)(sec^2x)=2(secx)xxsecxtanx

by the chain rule

Method 2

d/(dx)(tan^2x)=2(tanx)xxsec^2x

by the chain rule

sointsec^2xtanxdx=1/2tan^2x+c_2

the 2 results can be shown to be equivalent by use of

1+tan^2x=sec^2x