How do you find the antiderivative of int (sin(sqrtx)) dx∫(sin(√x))dx?
1 Answer
Jan 26, 2017
Explanation:
I=intsin(sqrtx)dxI=∫sin(√x)dx
Let
Then:
I=intsin(t)(2tdt)=int2tsin(t)dtI=∫sin(t)(2tdt)=∫2tsin(t)dt
Now we will use integration by parts. Let:
{(u=2t,=>,du=2dt),(dv=sin(t)dt,=>,v=-cos(t)):}
Then:
I=uv-intvdu
I=-2tcos(t)-int(-cos(t))2dt
I=-2tcos(t)+2intcos(t)
I=-2tcos(t)+2sin(t)+C
From
I=-2sqrtxcos(sqrtx)+2sin(sqrtx)+C