How do you find the antiderivative of int (sin(sqrtx)) dx(sin(x))dx?

1 Answer
Jan 26, 2017

intsin(sqrtx)dx=-2sqrtxcos(sqrtx)+2sin(sqrtx)+Csin(x)dx=2xcos(x)+2sin(x)+C

Explanation:

I=intsin(sqrtx)dxI=sin(x)dx

Let t=sqrtxt=x. This implies that x=t^2x=t2 so dx=2tdtdx=2tdt.

Then:

I=intsin(t)(2tdt)=int2tsin(t)dtI=sin(t)(2tdt)=2tsin(t)dt

Now we will use integration by parts. Let:

{(u=2t,=>,du=2dt),(dv=sin(t)dt,=>,v=-cos(t)):}

Then:

I=uv-intvdu

I=-2tcos(t)-int(-cos(t))2dt

I=-2tcos(t)+2intcos(t)

I=-2tcos(t)+2sin(t)+C

From t=sqrtx:

I=-2sqrtxcos(sqrtx)+2sin(sqrtx)+C