How do you find the antiderivative of int x^2/sqrt(1-x^3)dx?

1 Answer
Jan 14, 2017

-2/3sqrt(1-x^3)+C

Explanation:

Rewriting the function:

I=intx^2/sqrt(1-x^3)dx=intx^2(1-x^3)^(-1/2)dx

To deal with the -1//2 power, let u=1-x^3. This implies that du=-3x^2color(white).dx. Rewriting the integral:

I=-1/3int(1-x^3)^(-1/2)(-3x^2color(white).dx)=-1/3intu^(-1/2)color(white).du

Now use the rule intu^ncolor(white).du=u^(n+1)/(n+1):

I=-1/3(u^(1/2)/(1/2))=-2/3sqrtu=-2/3sqrt(1-x^3)+C