How do you find the antiderivative of int x^2cosx dx?

1 Answer
Oct 22, 2017

The answer is =(x^2-2)sinx+2xcosx+C

Explanation:

The integration by parts is

intuv'dx=uv-intu'v

Apply the integration by parts

Let u=x^2, =>, u'=2x

v'=cosx, =>, v=sinx

Therefore,

intx^2cosxdx=x^2sinx-int2xsinxdx

Apply the integration by parts a second time

Let u=x, =>, u'=1

v'=sinx, =>, v=-cosx

So,

intx^2cosxdx=x^2sinx-int2xsinxdx

=x^2sinx-2(-xcosx-int-cosxdx)

=x^2sinx+2xcosx-2sinx+C

=(x^2-2)sinx+2xcosx+C